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Red blood cells or artificial vesicles may be conveniently represented by capsules, i.e. 
liquid droplets surrounded by deformable membranes. The aim of this paper is to 
assess the importance of viscoelastic properties of the membrane on the motion of 
a capsule freely suspended in a viscous liquid subjected to shear flow. A regular 
perturbation solution of the general problem is obtained when the particle is initially 
spherical and undergoing small deformations. With a purely viscous membrane 
(infinite relaxation time) the capsule deforms into an ellipsoid and has a continuous 
flipping motion. When the membrane relaxation time is of the same order as the shear 
time, the particle reaches a steady ellipsoidal shape which is oriented with respect 
to streamlines at an angle that varies between 45' and Oo, and decreases with 
increasing shear rates. Furthermore it is predicted that the deformation reaches a 
maximum value, which is consistent with experimental observations of red blood 
cells. 

1. Introduction 
A red blood cell (r.b.c.), freely suspended in another fluid subjected to simple shear 

flow, exhibits very peculiar behaviour. When the suspending fluid viscosity is high 
enough, the r.b.c. takes a stable deformed shape while its membrane continuously 
rotates around this profile: this is the so-called 'tank-treading motion' (Fischer & 
Schmid-Schonbein 1977). Direct microscopic observation of this behaviour indicates 
that the apparent deformation of the cell increases with shear rate, until it reaches 
a maximum value. Furthermore, the particle is oriented with respect to streamlines. 
This orientation has not been measured up to now, but is known to exist because 
of two phenomena: the impossibility to focus simultaneously on both extremities of 
the cell, and the distortion of the diffraction spectrum of a laser beam crossing a 
sheared suspension of r.b.c.s. 

It is very difficult to model correctly the behaviour of such a particle, owing to 
its high overall deformability. When the cell is suspended in a shear flow, it deforms 
under the influence of the viscous stresses exerted by the suspending medium as well 
as by the internal liquid (the haemoglobin solution). Those stresses themselves depend 
on the overall shape of the particle and on the motion. Consequently the problem 
belongs to the free-interface class and is highly nonlinear. The situation is further 
complicated by the peculiar mechanical properties of the r.b.c. membrane. The latter 
is a very thin bilayer, lined with a protein network. Because of this structure, it  
behaves as a two-dimensional incompressible elastic sheet with nonlinear constitutive 
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behaviour. Furthermore, because the shear elastic modulus has a very low value, the 
membrane is easily shearable and can probably attain quite large deformations. This 
certainly complicates the formulation of the membrane-mechanics equations. Finally, 
a number of experiments (Evans & Hochmuth 1976; Chien et al. 1978; Tozeren et 
at?. 1982) have shown unambiguously that this membrane exhibits a measurable 
viscosity. 

These considerations may explain why up to now there have been relatively few 
mechanical models of r.b.c.s in general, and of their trank-treading motion in 
particular, and also why the presently existing models are still quite approximate 
and are all open to some sort of criticism. 

For example, a tank-treading ellipsoidal cell has been studied by Keller & Skalak 
(1982). Such a model represents qualitatively the general features of the motion of 
a r.b.c. suspended in shear flow, in particular the transition from a solid-body 
rotational motion to a tank-treading behaviour. However, the wall mechanics are not 
treated in detail, and consequently the shape of the deformed cell, which obviously 
must depend on the shear rate, is an independent parameter of the model. A different 
approach has been proposed by Barthes-Biesel (1980), who tried to understand the 
physical phenomena involved into cell behaviour by considering the motion of a 
spherical capsule suspended in shear flow (a capsule consists of a liquid drop 
surrounded by an elastic deformable skin). This type of model can only give 
qualitative informations, since a spherical cell is not a realistic representation of a 
r.b.c., which, in its natural shape, is a biconcave disk. However, the advantage 
of this simple geometry is that it is amenable to fairly straightforward analytical 
solutions into which all the features of the membrane behaviour can be taken 
into account and from which the main physical parameters can be identified. For 
example, when the capsule wall has elastic properties and when the deformation D 
is small ( D  Q i),  it is then predicted that, to first order, the particle reaches a steady 
ellipsoidal shape, oriented at 4.5' with respect to streamlines, while the membrane 
continuously rotates around this profile. Increasing the flow strength results in a slight 
decrease of the orientation angle, but this is an O(D2) effect. The deformation can 
be computed exactly and is found to be a monotonic increasing function of shear 
rate. 

Up to now, all models have only considered cells surrounded by a purely elastic 
skin, devoid of bending resistance. Now, if one takes into account the fact that the 
membrane does have a finite viscosity, one should expect the above results to become 
different and to depend on the ratio of viscous to elastic forces acting in the wall. 
Indeed, because of the conjugate effects of the tank-treading motion and of the steady 
global shape, a membrane element is subjected to a cyclic time-dependent load, and 
thus viscosity should play an important role. It is the objective of the present paper 
to study the influence of the membrane viscosity upon the motion, deformation and 
orientation of an initially spherical capsule suspended in a linear simple shear flow. 

Since the problem is time-dependent, it is convenient to use the Cartesian tensor 
formulation of membrane mechanics developed by Barthes-Biesel & Rallison (1981, 
hereinafter referred to as I) and by Secomb & Skalak (1982). To the elastic 
constitutive law of I the viscous term of Secomb & Skalak will be added linearly, 
so that the viscoelastic model chosen for the cell wall is of the Kelvin-Voigt type. 
The fluid-mechanical problems of the flows of the internal and external liquids are 
solved under the condition of kinetic and dynamic equilibrium of the membrane. This 
is done by means of a regular perturbation analysis developed in the case where the 
deformation is small. 
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In $2, the equations of the problem are given, together with a short outline of the 
membrane mechanics. The general solution in the case of a linear shear flow and of 
a spherical capsule subjected to small deformations may be found in $3. The particle 
motion is discussed for simple shear flow in $4, while the types of behaviour obtained 
for different membrane properties are shown in $$5-7. The relevance of the results 
to r.b.c. mechanics is discussed in $8. 

2. Statement of the problem 
Consider a capsule of characteristic dimension a, filled with an incompressible 

Newtonian liquid of viscosity Ap and surrounded by a two-dimensional membrane 
with a surface shear elastic modulus P, and a surface viscosity ps. This capsule is 
suspended in another Newtonian incompressible liquid of viscosity p, which is 
subjected to a linear shear flow G ( € + a ) ,  where E and SZ are respectively the 
symmetric and skew-symmetric parts of the velocity gradient. Non-dimensional 
quantities are used : lengths are scaled by a, time by G-' and viscous stresses by pG. 

2.1. General quatiom 
Assuming the particle to be very small, the Reynolds number bwed on its dimensions 
is much smaller than unity, so that inertial effects may be neglected. The fluid 
mechanics is described by the Stokes equations. Denoting by v', Ve and S respectively 
the internal domain, the suspending fluid and the surface of the particle (figure l) ,  
the non-dimensional governing equations with respect to a set of axes moving with 
the centre of mass of the cell are: 

v - v  = 0 ,  V'U = 0,  (2.1) 

(2.2) 

(2.3) 

with 

I u = - p / +  (Vu+VvT) 

u = -p /+A(Vv+VvT)  in v', 

u+(E+SZ)*x as IxI+oo, 

in P, 

where v and p are respectively the velocity and pressure fields, / is the unit tensor, 
n is the outward unit normal vector to S andfis the force exerted by the membrane 
on the fluids. The notation [ Is denotes the jump of the enclosed quantity across the 
boundary. 

Conditions (2.4) and (2.5) correspond respectively to the kinetic and dynamic 
equilibria of the membrane. The exact expression forfdepends on the wall mechanics, 
which is now specified. 
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2.2. Membrane mechanics 
A formulation of membrane mechanics in terms of Cartesian tensors has been 
proposed in I for the elastic behaviour and by Secomb & Skalak (1982) for the viscous 
one. We briefly outline the theory and show how a linear viscoelastic constitutive 
law for the membrane may be constructed. For the sake of clarity, dimensional 
quantities are used first ; the non-dimensionalization will be performed when the 
coupling between fluid and solid mechanics is completed. 

The material points of the membrane are labelled by their position X in some 
reference configuration (unstressed). After application of a load, they are displaced 
to position x ( X ,  t ) .  The three-dimensional displacement gradient is thus 

Since all the points belong to a surface, i t  is necessary to  define a projection tensor 
P, which maps three-dimensional space into the two-dimensional subspace of the cell 
surface. If n is the unit normal to the deformed surface then 

P = I-nn. (2.6) 

Similarly, the projection tensor onto the undeformed surface is 

Pa = I-  NN, 

where N is the unit normal to the reference configuration. Consequently, the 
two-dimensional deformation gradient is defined as 

A = P*C.Pa. (2.7) 

For a purely elastic material, its mechanical behaviour is completely determined 
by a strain-energy function W ( A l , A 2 )  which depends only on the strain invariants 
A ,  and A,  given by 

A ,  = logA,h, = 4 log{+[tr (A*AT)I2-$ t r  [(A*AT),]}, 

A ,  =i(h;+hi)-l  = + t r ( A * A T ) - l ,  
} (2.8) 

where A1 and A, are the principal stretch ratios. With such definitions, the invariant 
A ,  is linked to  local surface variations, and is thus zero when the membrane is 
incompressible. Then the two-dimensional Cauchy stresses in the membrane are given 

The viscous behaviour of the membrane has been studied by Secomb & Skalak, 
who show that the proper definition of the rate of strain is 

where 
d x  
dt ’ 

= - 

(2.10) 

At this stage it is sufficient to  postulate a linear constitutive law for the viscous 
behaviour of the membrane. However, following Secomb & Skalak, it is necessary 
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to separate in the viscous stress uv the contributions from the shear viscosity ps and 
from the expansion viscosity ,dS : 

uV = tr  (e) P+ 2ps[e-+ tr (e) PI. (2.11) 

If the shell is incompressible, as is the case for many biological membranes with a 
bilayer structure, then the first term in (2.11) identically vanishes, and only the pure 
shear components of e are relevant. But, if the membrane material can undergo 
surface variations, then two viscosity coefficients are needed in principle. Since there 
is very little information on the relative magnitudes of ps and P’~, we have chosen 
here for the sake of simplicity to make them equal, in order to characterize viscous 
effects with a single parameter ps. Thus the constitutive relation (2.11) reduces to 

uV = 2 p e ,  (2.12) 

which is the correct form for an incompressible membrane. 
In the present analysis it was decided to describe the membrane behaviour by 

means of a simple Kelvin-Voigt model, where the stress tensor is the sum of the elastic 
and of the viscous contributions: 

0 = ue+uv, I 
aw aw 

u = e-”l(= P+- A*AT 
1 

b (2.13) 

To complete the description of the problem, there remains to express the equilibrium 
equations of the membrane, which, in the absence of inertia, may be written as 

P .V .0  =f, (2.14) 

wherefis the load exerted by the shell on the external medium. 
There are two kinds of coupling between fluid and solid mechanics. The first one 

is kinematic and follows from the continuity of velocities between the liquids and 

(2.15) 
dx the membrane : 

dt 

where $ represents the fluid velocity on the surface. Using again a and G-’ 
respectively as length and timescales, (2.15) remains unchanged when non- 
dimensional quantities are used. 

The second coupling arises through the forcefwhich appears both in (2.5) and in 
(2.14). This leads also to the question of the proper scaling of$ If tensions (forces 
per unit length) in the shell are scaled by Es when they have an elastic origin and 
by pSG when they are viscous, then, combining (2.5) and (2.14) and now using 
non-dimensional quantities, we find 

[ ~ * n ] s  = - k f e - r f ” ,  (2.16) 

v p =  vm=- (X€S), 

with 
(2.17) 

f” = P*V*(2e) .  (2.18) 

Consequently, it  appears that the problem depends on three main parameters : 
A, the ratio of bulk viscosities of the internal and external liquids ; 
k = Es/pGa, the ratio of elastic forces in the membrane to viscous forces exerted 
by the suspending fluid ; 
5 PLY 180 
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'7 = pS/pa,  the ratio of membrane viscosity to  the bulk viscosity of the suspending 
liquid (since ps is a surface viscosity, i t  has the dimensions of a bulk viscosity 
multiplied by a length). 

Obviously, for any capsule (and particularly for a r.b.c.), subjected to  any shear 
flow, this problem is highly nonlinear and no general solution presently exists. 
However, in the particular situation of an initially spherical capsule, limited to  small 
deformations, i t  is possible to develop a regular perturbation expansion of the 
solution. 

3. Solution in a general linear shear flow 
From now on, we consider the special case of an  initially spherical capsule of 

radius a.  Owing to the vorticity of the shear flow, the particle both rotates and 
deforms. However, as was pointed out by Barthes-Biesel (1980) and also in I, i t  is 
possible to take advantage of the initial isotropy of the shape and to  subtract out the 
rotation from the problem. Let Y label the material points in a reference configura- 
tion ( t  = 0) such that Y Y = 1 .  

At time t the points occupy position x( t )  resulting from a total displacement which 
may be decomposed into a rotation and a stretch. If Q ( t )  is the rotation matrix of 
the membrane during time t ,  i t  obeys the following relations : 

Q.QT = I, Q = w . 0 ,  

where w is the rotation rate of the wall. Since the initial shape is isotropic, a new 
reference configuration may be defined where the material points are labelled by X, 
such that 

Consequently, X may be viewed as the Eulerian position of the points before 
deformation. Since the solid-body rotation generates no stresses, and since the 
material is assumed to  be isotropic, we may use X rather than Y as the reference 
configuration of the membrane. 

Now we assume that the deformations of the sphere are limited, and we denote 
their magnitude by s @ 1.  Consequently, the displacement may be written as 

X = Q * Y ,  8 = w * X .  (3.1) 

x = x+ q ( X )  + O ( E 2 ) .  

Then, following a standard procedure (Cox 1969; Frankel & Acrivos 1972; Barthes- 
Biesel 1980), all equations are expanded in terms of 6. Thus for each order in E the 
problem to be solved becomes linear. 

3.1. The purely elastic membrane 

When the membrane is purely elastic its time-dependent deformation has been 
obtained to O(s) in I. It is shown that the displacement of the material points depends 
on two second-order tensors J and K,  which are symmetric and traceless: 

The overall distortion of the profile of the particle is determined by J, since the surface 
equation is given by r = (x*x)i = 1 + s F  J*X+  O($), 

whereas K measures in-plane deformations of the membrane elements. Using (3.2), 

(3.3) 



Deformation of a capsule in shear pow 125 

it  is straightforward to determine P, A ,  ue and ultimately f e .  The procedure then 
consists in expressing the solution to the Stokes equations in terms of spherical 
harmonics (of order 2 in this approximation) : 

(3.4) 
The coefficients of the harmonics Se, T e ,  Si and Ti  are second-order symmetric and 
traceless tensors which follow from boundary conditions (2.3)-(2.5), where f is 
replaced byfe. Their values are given in I. The dynamic coupling between the fluid 
and the membrane is thus realized, and there remains to express the kinematic 
condition (2.15), which leads to two differential equations defining the time evolution 

3 = a, €+ ks[b, L + (b,  + b,) MI + O(ks2),  

rQ = a, € + ks[b, L + b,  M ] + O( ks2).  

of J and K :  
(3.5) 

where denotes a Jaumann derivative defined for any second-order tensor as 

W 
at 

3 = - + w . J + J - w .  

Also a, = 5b,, 
1 

2A+3’ 
b, = - 

2(3A + 2) 2 
b -  ’- (19A+16)(2A+3)’ b 2 =  19A+16’ 

L and M are two homogeneous linear combinations of J and K 

(3.6) 
L = 4(a2 + a3) J- (601, + 1001,) K, 

M = - 4(a1 + 2a2 + 2a3) J+ ( 1201, + 1 6 ~ ~ ~ )  K. 

The coefficients ai depend on the specific elastic properties of the material, whose 
strain-energy function W is expanded as follows : 

w = W,+alA1 ++(a1 +a2) A; +a,(A,  -A1) + 0(sS). 

3.2. The purely viscous membrane 
The problem to be solved is given by (2.1) and (2.2), with which the following 
boundary conditions are associated : 

u + o  & S 1 X I + O ,  (3.7) 

CVIS  = 0, (3.8) 

[..nls = --rlfv, (3.9) 
andfV is given by (2.18). 

The first step consists in determining 8. We assume that the position of each 
material point is given by (3.2). This will be justified a posteriori. The velocity of the 
membrane then follows from (3.2) and (3.1): 

dx X 
dt X2 ~m = - = o.~+s(/i+~.w).~+EW.~X(~-~~.- 

€X 
x2 +- [X ( J - / i ) * X + o * X ( J -  K ) * X + X  (J- K)*o*X]+0(e2) .  (3.10) 

5-2 
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However, to compute the velocity gradient e we must first express vm in terms of 
the instantaneous deformed position x .  This is achieved by solving (3.2) by successive 
approximations and then by replacing X b y  x in (3.10). The final result f o r e  becomes 

k + x . k . - - ( k . x x + x x . k )  xxx -+Px*(J-k)*-]+O(Bo), 1 X (3.11) 
r4 r2  r2 

from which i t  follows that (3.9) can be written as 

X 

r 
(3.12) 

The general solution to (2.1) and (2.2) is again obtained in terms of second-order 
harmonics (3.4). Using these expressions, and t h e  corresponding values of the viscous 
stresses in the boundary conditions (3.7), (3.8) and (3.12), the expressions of the 
harmonics S and T e  can be obtained : 

S" = -p ( C 3 Q + C 4 / Q ) ,  
C O  

T e  = 2yeb0(2J-9/Q). 

The velocity field of the suspending fluid may then easily be computed, and the 
kinematic condition (2.15) leads to  two differential equations in J and K :  

with 

0 2ys 0 

sJ = -- ( c ,  J + c 2 k ) + O ( y s 2 ) ,  
CO 

I 0 27s 0 

sK = -- (c3J+c4k)+O(ys2) ,  
CO 

C, = (2A+3)(19A+16), c1 = 2(A+4), c2 = 15A, 

(3.13) 

c3 = -2(7h+8), c4 = 47/\+48. 

Furthermore, it also appears that 

which means that the rotation rates of the membrane and of the fluids are equal to 
this order. 

3.3. The viscoelastic membrane 
In  the case of a viscoelastic membrane, because of the linearizing procedure, to first 
order in 8, the viscous behaviour simply adds up to  the elastic one. Consequently the 
time evolution of the deformation is obtained by adding (3.5) and (3.13): 

0 = SL+O(E), 

(3.14) 1 d = a, €+ ks[b, L + ( 6 ,  + b,) M ]  -- 27" (c, J+ c ,  k )  + O(ks2, ye2), 
CO 

2 v  
CO 

sk = a, € + ke(b0 L + b, M )  - - (c3 3 + c4 k ) + O(ks2, ye2). 

Because of the appearance of the Jaumann derivative in (3.14), i t  follows that J and 
K are not parallel to E. As a consequence, i t  may be expected that the particle will 
orient itself a t  an angle with respect to  the principal direction of shear. Furthermore, 
to this order of approximation and for steady states, it is clear that no higher-order 
tensors should be included in the equation of the profile of the particle, since they 
would contribute to transient states only. 
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4. Deformation and orientation in simple shear flow 
The underlying hypothesis in the derivation of the solution was that the deformation 

was small and measured by a parameter called e .  There remains now to relate e to 
the physical parameters of the system as they were listed in $2. 

The deviation of the shape from sphericity will be small in three asymptotic 
situations: 

k 9 1,  7 = O( l) ,  E = k-' : this case corresponds to weak flows or to strong elastic 
forces. It is the only one to have already been solved (I) ; 
k = O ( l ) ,  7 B 1, E = 7 - l :  this case corresponds to a very viscous membrane with 
low elasticity; 

k B 1 , q  9 1 ,  e = k-l or 7 - l :  this case corresponds to a very viscous membrane, and 
strong elastic forces or weak flows. 

It is useful to introduce a new parameter p, which measures the relative magnitude 
of k and 7: 

(4.1) 
7 P G  p=-=-  
k Es' 

This parameter is the ratio of the characteristic relaxation time of the membrane 
p g l P  to the shear time G-l. As such, it is identical with the Deborah number, 
commonly used for viscoelastic fluids, which measures the relative magnitudes of the 
flow time and of the liquid time. The three cases mentioned above may be treated 
simultaneously if we let p vary between 0 and infinity and if we choose 

k-l e = -  
1 +p' 

keeping in mind that for the analysis to  be valid, when /3 is O(1) or less, then k must 
be very large. It is then obvious that, in the system (3.14), the left-hand side is 
negligible with respect to the leading terms of the right-hand side; consequently this 

+ O(k-l, k-lp- l ) .  
pi= 5(p+l)E+L+:M 

system reduces to: 

pk = $(/f+l)€+$+yw 
Once the type of elastic behaviour is specified, the above equations describe the time 
evolution of the capsule shape for any given shear field E. 

The situation of interest clearly occurs when the flow has a non-zero vorticity, since, 
in this case, the rotation of the membrane creates a time-dependent load on each 
material point. One should thus expect to observe an influence of the membrane 
viscosity even at steady state. Consequently, the solution to (4.2) will be sought in 
the case of a steady simple shear flow given by 

(4.3) E - E  - Q  - - Q  -1 
1 2  - 21 - 12 - 21 - 29 

all other components being zero. We assume that at time t = 0 the capsule is spherical 
and that the flow is suddenly started from rest. The components of interest for J and 
for K are the 11, 22 and 12 ones, since the others vanish. Furthermore, from the 
condition of tracelessness, it follows that 

J, ,  = - JZ2 ,  Kl l  = - K Z 2 .  
The equation of the capsule profile is obtained from (3.3), and may be rewritten as 

(4.4) r2 = 1 +2e[2J12 z1 z2 + J,,(z; - 4 1  + O(e2) .  
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'i p i o n  

XI 

FIGURE 2. Profile in the 12 plane of a deformed capsule subjected to  a simple shear Aow. The 
departure from sphericity is exaggerated for clarity. 

This equation is that of an ellipsoid with principal semidiameters A,, A ,  and A,. The 
diameters A,  and A,  are in the 12 plane and make an angle 8 with the axes Ox, and 
Ox,, while A ,  is along Ox, (see figure 2). From (4.4) it then follows that 

A ,  = 1 +e(J;,+<,)i, A ,  = 1 -e(J?, +<,)$, tan28 = Jl,/Jll. (4.5) 

Since the resulting profile is non-symmetric, its deviation from sphericity cannot be 
measured by a single quantity. It is clear that the larger deformation is found in the 
12 plane. It can be defined in the classical way as 

A,-A,  , 4, = e(<,+J&)i+O(e2) .  
D1, = A,+A, 

However, in the experimental devices designed to observe and to measure the 
deformation of r.b.c.s the line of sight is parallel to the axis Ox,, so that only an 
apparent deformation D, is measured. It corresponds to the projection of the profile 
on the 13 plane and follows from (4.4): 

D, = +Jll + O(e2), 

whereas the true deformation in a section containing the diameters A,  and A, is 
expressed as 

D,, = +z(<, + e,): + O(e2) = fD,,. 

The difference between D, and D,, is only due to orientation effects. 

behaviours. 
The types of motion are now studied for membranes with different constitutive 

5. Case of three-dimensional incompressible isotropic elasticity 
Here it is assumed that the elasticity of the membrane corresponds to that of an 

infinitely thin sheet of a three-dimensional isotropic, incompressible material. As 
shown in I,  this leads to the following values of the coefficients a#: 

a, = 0 (no prestress), 

a, = 201, = i. 
The characteristic surface modulus Es is identified with the product of the bulk Young 
modulus of the material with the thickness of the sheet : 

Es = Eh. 
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Then, replacing f and M by their values given by (3.6), the system (4.2) becomes 

129 

Its general solution is straightforward : 

c1 sint-ca cost 5 ,9+1 p 
c, cost+ca sint I+--[ 4 $+i 4 1 3  

[;:I = e - ~  [ 

1 3 c1 sin t - ca cost 
2 c1 cos t + c, sin t 

] + e-t/38 - [ c, sin t - cq cos t 
c, cost+c, sint 

[::I = e-t/8 [ 

The dynamic response of the particle has two relaxation times /3 and 3p. This is 
due to the fact that two independent modes of deformation are allowed for the 
surface: pure shear and area dilatation. Furthermore, after an initial transient 
behaviour, which has a duration of order 8, the capsule reaches a steady profile defined 
bv 

It follows from (5.4) and (4.5) that the orientation of the particle is given by 

Consequently 8 varies between 0' and 45'. 
The very small values of /3 correspond to membranes with negligible viscosity 

subjected to weak flows (k P 1). This case has already been solved by Barthes-Biesel, 
by Brunn (1980) and in I. It is found indeed that, to O(k- l ) ,  the capsule deforms into 
an ellipsoid oriented at  45' with respect to streamlines. When B-+O the asymptotic 
values of J are obtained from (5.4) : 

lim J, ,  = 0, 
8 4  8 4  

lim J,, = y, 

which is consistent with the aforementioned results. Consequently, the low-shear 
deformation of the capsule is given in this case by 

lim D,, = Yk-'+O(kp2) .  
B-.o 

The relaxation times of the particle are very small, O(k- l ) ,  so that the steady profile 
is reached almost instantaneously, the time delay being due essentially to the 
viscosity of the internal fluid. 

For 0(1) values of p (k P 1 and T,I % 1) the membrane viscosity begins to play an 
important role. The orientation is then a decreasing function ofp. For a capsule of 
given properties, with a non-zero viscosity, increasing /3 is equivalent to increasing 
the shear rate G ((4.1)). Consequently, taking the membrane viscosity into account 
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FIQURE 3. Variat.ion of the orientation angle with respect to streamlines, as a function of /3. The 
parallel scale in shear rates is computed for a capsule that has physical properties similar to those 
of a r.b.c. (5.9). 
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FIGURE 4. Deformation of the capsule defined by (5.9) versus /3 or, equivalently, shear rate. The 
dashed line is the true deformation D,,, whereas the full line is the apparent deformation D,. 

leads to an O( 1) effect in the orientation of the capsule as shown on figure 3. The true 
deformation of the particle is given by 

whereas the observed deformation is 

For small /3, D,, and D, are distinct and increase with shear rate. For large values 
of p, D,, and D, have a common upper bound given by 

lim D,, = lim D, = h-'. 
8-00 1-00 

This behaviour is very different from that predicted for capsules with elastic 
membranes, where the deformation is an ever-increasing function of G. The evolution 
of deformation with shear rate can only be plotted for a specific capsule, since i t  
involves both k and P. If we choose a particle that  has physical properties similar 
to those of a r.b.c. suspended in a 20 cP medium, i.e. 

a = 3 pm, Es = 5 x lo-, dyn/cm, ps = 5 x lop4 dyn s/cm, (5.9) 

then the variations of D,, and D, with /3 are shown on figure 4. As already pointed 
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out, the deformation is an increasing function of shear rate, but it is limited. This 
result is in qualitative agreement with the experimental observations of Pfafferott, 
Wenby & Meiselman (1982). 

6. The r.b.c.-type elasticity 
It is assumed now that the elastic properties of the material are similar to those 

of a r.b.c. This means that the membrane strongly resists area changes, but has a 
relatively low shear modulus. The variation of the local surface area is measured by 
the invariant A,. The constancy of this quantity is ensured to O(E)  if 

A,  = E X * ( W - ~ K ) . X + O ( E ~ )  = 0, 

or J = :K+O(s). 

Skalak et al. (1973) as 
A form of the strain-energy function for a r.b.c. membrane has been proposed by 

W = iB[4( 1 + A,),  -4( 1 + A , )  - 2 e2Ai] +&‘(e4”1 - 2 eZA1). 

This means for small deformations that 

with 

a, = 0 ,  a, = C, a3 = +B, 

C = 5 dyn/cm, B = 5 x dyn/cm. 

If the value of B is chosen as the characteristic modulus Es then 

a, = lo3, a, = +. 
Following I, we introduce a second-order tensor F,  which becomes O(a;’) on a rapid 

timescale and which is defined by 
J = #K+F. 

Then, eliminating a3 F terms from the system (4.2), we obtain a single differential 

PJ = ?f(/3+ 1 ) E - t J .  equation for J :  

Thus the capsule, being restricted in the deformations it can achieve, has only one 
relaxation time, equal to 28. After an initial transient behaviour, the particle reaches 
a steady deformation and orientation given by 

It appears that the deformation is smaller for such a membrane than for one made 
of a three-dimensional elastomer. This can be attributed to the surface incompress- 
ibility condition, which limits the deformation modes. However, the deformation 
curves present qualitatively the same features as those on figure 4. The same 
phenomenon of rapid alignment with streamlines is observed. 

7. Purely viscous membrane 
When the membrane elasticity is altogether negligible (7 9 1,  k = O(1) )  the 

viscosity becomes the dominant effect. The time evolution of the profile follows from 
(4.2) and is given by 
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mg-' 0 lPGt 2n 4n 

FIQURE 5. Time evolution of the orientation and of the deformation in the 12 plane of a capsule 
with a very viscous membrane. When elastic forces are not taken into account, no steady state 
exists, and the membrane continuously inflates and deflates, while oscillating between -45' and 
+ 45' orientations with respect to streamlines. 

Gt 0 n 

FIGURE 6.  Successive profiles in the 12 plane of a capsule with a very viscous membrane. The 
departure from sphericity is exaggerated for clarity. 

with m = 5 for an elastomer elasticity and m = 9 for r.b.c. elasticity. The solution 
to this set of equations is periodic : 

m 1-cost [;::I = 2 [ sint 1. 
It corresponds to  the asymptotic behaviour of solution (5.3) when p becomes infinitely 
large, time remaining finite (then the time-exponential functions become unity a t  
leading order, and the constants ci are computed from the condition that at time t = 0 
the shape is spherical). This means that the particle's shape is an ellipsoid, with 
time-dependent principal diameters given by 

A, = l+my-'Isin+tI, A, = l-mq-llsin$l, A, = 1. 
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The angle of inclination of this profile is then 

8 =+c-+t, t~[0,21c] rnodh,  

8 =:%-it, t~[21c,41c] mod41c. 

D,, = + q - l  I sinit I = illl2. 
The deformation becomes 
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The time evolutions of 8 and of the observed deformation are shown on figure 5.  
The capsule's profile oscillates between 45' and - 45', while periodically elongating 
and deflating. The different stages of the shape are shown on figure 6. This behaviour 
is similar to the one observed by Rallison (1980) for very viscous droplets, and may 
also be attributed to the dominant effect of viscosity forces. 

8. Discussion 
It is striking to note how much the overall motion of a capsule suspended in shear 

flow is affected by the membrane viscosity. The previous studies on spherical 
capsules, which had only considered a purely elastic skin (k % l),  found to O(k-l)  a 
45' orientation. After long and tedious calculations, Barthes-Biesel (1980) has 
obtained the O(k-2) terms and has shown that the angle slightly decreases with 
increasing shear rate. Also, the deformation is found to be a quadratic function of 
G and thus to increase without bound (this is of course an artefact of the expansion 
procedure). When the membrane viscosity is taken into account, the simple first-order 
analysis presented here changes the picture completely : orientation effects are 
important for low shear rates, but for high values of G all particles are parallel to 
the lines of flow. Also, the deformation is limited when the viscous load is increased. 
This phenomenon is explained by the role of membrane viscosity, which hinders the 
continuous flow of the interface during tank-treading motion. Finally, when the 
particle viscosity (whether it be the internal or the parietal one) is much higher than 
that of the suspending medium, an oscillatory motion is predicted. 

The question that arises now is the relevance of this model to r.b.c. behaviour. When 
the suspending medium viscosity is of the order of 1 CP it is experimentally observed 
that the r.b.c.s behave aa flexible elastic solids, and have a 'flipping' motion even 
at  very high shear rates. In such a fluid, with the values of the parameters given by 
(5.9), we find 

7x167 ,  k x a ,  I6'O A x  10. 

Viscous effects are dominant, and the capsule deformation is limited by the high value 
of 7. This may correspond to the oscillatory motion predicted in $7. It is, of course, 
more easily observable when the particle is a disk rather than a sphere. The ratio 
A of internal to external viscosities is also large, which further enhances the 
phenomenon. 

In  a 20 CP medium, the value of 7, although still large, is more modest: 

83 
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7 x 8.3, k =-, A x 0.5. 

The deformation is 20 times larger than in the previous case, and results at low shear 
from both viscous and elastic effects. Consequently tank-treading is predicted, and 
the deformation curve has the same qualitative behaviour as the one published by 
Pfafferott et al. (1982). 
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In high-viscosity media (p 2 100 cP) the value of r ]  is too small for the present 
analysis to apply. Elastic effects are dominant, and the previously existing models, 
with their shortcomings, become relevant. 

Altogether, deformation is predicted to increase with the suspending-fluid viscosity, 
which is consistent with the experimental observations of r.b.c.s. 

Another question of interest is the proper definition of the value of the membrane 
viscosity. Indeed, Chien et al. (1978) carefully measured pus from micropipette suction 
recovery experiments. They found that ,us had first a low value of the order of 

dyn s/cm, corresponding to an initial recovery phase and probably to high shear 
rates. During a secondary slow recovery phase ,us had a higher value of the order of 
the one used in this study. Obviously, the membrane shear rate, as given by (3.11), 
is a function of position. The inclusion in the model of a shear-thinning behaviour 
of the interface would certainly have complicated the solution, and it is not obvious 
that this would have resulted in a great change in the overall predictions. Recently, 
Tran-Son-Tay, Sutera & Rao (1984) have used the Keller & Skalak approach to infer 
from experimental observations the value of the membrane viscosity of a tank-treading 
cell. They thus obtain very low values of the average membrane viscosity, of the order 
of (1-0.6) x dyn s/cm, which might be justified for their high-shear experiments, 
but seems a little low for the low-shear ones. However, as was pointed out by Keller 
& Skalak themselves, their model is only roughly approximate, especially in the choice 
of a linear velocity field for the membrane rotation. Tran-Son-Toy et al. have 
reevaluated their computations using a more realistic velocity field, and have found 
that their membrane-viscosity estimates were then increased by 40-70 % . This was 
done without taking into account the corresponding modifications of the internal and 
external flow fields. It thus seems that there is a large uncertainty in this method 
of determination of ,us, and that the question of the proper value of this parameter 
remains open. 

In conclusion, it is clear that the choice of an initial spherical geometry limits the 
applicability of this model to r.b.c.s. Indeed the membrane incompressibility imposes 
very small departures from sphericity. For a diskoidal cell, the membrane incom- 
pressibility does not prevent large deformations, but determines the type of tank- 
treading motion. This is obviously a very Complicated process, which has not yet 
been completely modelled. The simple model presented here, despite its shortcomings, 
has many of the features of r.b.c. behaviour and shows clearly that membrane 
viscosity is an important intrinsic parameter which should be included in studies of 
tank-treading cells. 
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